World Library  
Flag as Inappropriate
Email this Article

V speeds

Article Id: WHEBN0017308643
Reproduction Date:

Title: V speeds  
Author: World Heritage Encyclopedia
Language: English
Subject: Minimum control speeds, Binder EB28, HKS-1, PIK-5, PIK-13
Publisher: World Heritage Encyclopedia

V speeds

A single-engine Cessna 150L's airspeed indicator indicating its V speeds.
A flight envelope diagram showing VS (stall speed at 1G), VC (corner/maneuvering speed) and VD (dive speed)

In aviation, V-speeds (from velocity) are standard terms used to define airspeeds important or useful to the operation of all aircraft.[1] These speeds are derived from data obtained by aircraft designers and manufacturers during flight testing and verified in most countries by government flight inspectors during aircraft type-certification testing. Using them is considered a best practice to maximize aviation safety, aircraft performance or both.[2]

The actual speeds represented by these designators are specific to a particular model of aircraft. They are expressed by the aircraft's indicated airspeed (and not by, for example, the ground speed), so that pilots may use them directly, without having to apply correction factors, as aircraft instruments also show indicated airspeed.

In general aviation aircraft, the most commonly used and most safety-critical airspeeds are displayed as color-coded arcs and lines located on the face of an aircraft's airspeed indicator. The lower ends of the green arc and the white arc are the stalling speed with wing flaps retracted, and stalling speed with wing flaps fully extended, respectively. These are the stalling speeds for the aircraft at its maximum weight.[3][4] The yellow range is the range in which the aircraft may be operated in smooth air, and then only with caution to avoid abrupt control movement, and the red line is the Vne, the never exceed speed.

Proper display of V speeds is an airworthiness requirement for type-certificated aircraft in most countries.[5][6]


The most common V-speeds are often defined by a particular government's aviation regulations. In the United States, these are defined in title 14 of the United States Code of Federal Regulations, known as the Federal Aviation Regulations or FARs.[7] In Canada, the regulatory body, Transport Canada, defines 26 commonly used V-speeds in their Aeronautical Information Manual (AIM).[8] V-speed definitions in FAR 23, 25 and equivalent are for designing and certification of airplanes, not for their operational use. The descriptions below are for use by pilots.

Regulatory V-speeds

These V-speeds are defined by regulations
V-speed designator Description
V1 The speed beyond which the takeoff can no longer be safely aborted. (See V1 definitions below)[7][8][9]
V2 Takeoff safety speed. The speed at which the aircraft may safely become airborne with one engine inoperative.[7][8][9]
V2min Minimum takeoff safety speed.[7][8][9]
V3 Flap retraction speed.[8][9]
V4 Steady initial climb speed. The all engines operating take-off climb speed used to the point where acceleration to flap retraction speed is initiated. Should be attained by a gross height of 400 feet.[10]
VA Design maneuvering speed. This is the speed above which it is unwise to make full application of any single flight control (or "pull to the stops") as it may generate a force greater than the aircraft's structural limitations.[7][8][9][11]
Vat Indicated airspeed at threshold, which is equal to the stall speed VS0 multiplied by 1.3 or stall speed VS1g multiplied by 1.23 in the landing configuration at the maximum certificated landing mass. If both VS0 and VS1g are available, the higher resulting Vat shall be applied.[12] Also called "approach speed".
VB Design speed for maximum gust intensity.[7][8][9]
VC Design cruise speed, used to show compliance with gust intensity loading.[13]
Vcef See V1; generally used in documentation of military aircraft performance.[14]
VD Design diving speed.[7][8][9]
VDF Demonstrated flight diving speed.[7][8][9]
VEF The speed at which the critical engine is assumed to fail during takeoff.[7]
VF Designed flap speed.[7][8][9]
VFC Maximum speed for stability characteristics.[7][9]
VFE Maximum flap extended speed.[7][8][9]
VFTO Final takeoff speed.[7]
VH Maximum speed in level flight at maximum continuous power.[7][8][9]
VLE Maximum landing gear extended speed. This is the maximum speed at which it is safe to fly a retractable gear aircraft with the landing gear extended.[7][8][9][15]
VLO Maximum landing gear operating speed. This is the maximum speed at which it is safe to extend or retract the landing gear on a retractable gear aircraft.[7][9][15]
VLOF Lift-off speed.[7][9]
VMC Minimum control speed. Mostly used as the minimum control speed for the takeoff configuration (takeoff flaps). Several VMCs exist for different flight phases and airplane configurations: VMCG, VMCA, VMCA1, VMCA2, VMCL, VMCL1, VMCL2. Refer to the minimum control speed article for a thorough explanation.[7]
VMCA Minimum control speed in the air (or airborne). The minimum speed at which steady straight flight can be maintained when an engine fails or is inoperative and with the corresponding opposite engine set to provide maximum thrust, provided a small (3° - 5°) bank angle is being maintained away from the inoperative engine and the rudder is used up to maximum to maintain straight flight. The exact required bank angle for VMCA to be valid should be provided by the manufacturer with VMC(A) data; any other bank angle results in a higher actual VMC(A). Refer to the minimum control speed article for a description of (pilot-induced) factors that have influence on VMCA. VMCA is also presented as VMC in many manuals.
VMCG Minimum control speed on the ground is the lowest speed at which the takeoff may be safely continued following an engine failure during the takeoff run. Below VMCG, the throttles need to be closed at once when an engine fails, to avoid veering off the runway.[16]
VMCL Minimum control speed in the landing configuration with one engine inoperative.[9][16]
VMO Maximum operating limit speed.[7][8][9]
VMU Minimum unstick speed.[7][8][9]
VNE Never exceed speed.[7][8][9][17]
VNO Maximum structural cruising speed or maximum speed for normal operations.[7][8][9]
VO Maximum operating maneuvering speed.[18]
VR Rotation speed. The speed at which the aircraft's nosewheel leaves the ground.[7][8][9] Also see note on Vref below.
Vrot Used instead of VR (in discussions of the takeoff performance of military aircraft) to denote rotation speed in conjunction with the term Vref (refusal speed).[14]
VRef Landing reference speed or threshold crossing speed.[7][8][9]

(In discussions of the takeoff performance of military aircraft, the term Vref stands for refusal speed. Refusal speed is the maximum speed during takeoff from which the air vehicle can stop within the available remaining runway length for a specified altitude, weight, and configuration.[14] ) Incorrectly, or as an abbreviation, some documentation refers to Vref and/or Vrot speeds as "Vr."[19]

VS Stall speed or minimum steady flight speed for which the aircraft is still controllable.[7][8][9]
VS0 Stall speed or minimum flight speed in landing configuration.[7][8][9]
VS1 Stall speed or minimum steady flight speed for which the aircraft is still controllable in a specific configuration.[7][8]
VSR Reference stall speed.[7]
VSR0 Reference stall speed in landing configuration.[7]
VSR1 Reference stall speed in a specific configuration.[7]
VSW Speed at which the stall warning will occur.[7]
VTOSS Category A rotorcraft takeoff safety speed.[7][17]
VX Speed that will allow for best angle of climb.[7][8]
VY Speed that will allow for the best rate of climb.[7][8]

Other V-speeds

Some of these V-speeds are specific to particular types of aircraft and are not defined by regulations.
V-speed designator Description
VBE Best endurance speed – the speed that gives the greatest airborne time for fuel consumed.
VBG Best power-off glide speed – the speed that provides maximum lift-to-drag ratio and thus the greatest gliding distance available.
VBR Best range speed – the speed that gives the greatest range for fuel consumed – often identical to Vmd.[20]
VFS Final segment of a departure with one powerplant failed.[21]
Vimd Minimum drag[22]
Vimp Minimum power[22]
VLLO Maximum landing light operating speed – for aircraft with retractable landing lights.[9]
Vmbe Maximum brake energy speed[22][23]
Vmd Minimum drag (per lift) – often identical to VBR.[20][23] (alternatively same as Vimd[24])
Vmin Minimum speed for instrument flight (IFR) for helicopters[17]
Vmp Minimum power[23]
Vp Aquaplaning speed[25]
VPD Maximum speed at which whole-aircraft parachute deployment has been demonstrated[26]
Vra Rough air speed (turbulence penetration speed).[9]
VSL stall speed in a specific configuration[9][23]
Vs1g stall speed at 1g load factor
Vsse Safe single engine speed[27]
Vt Threshold speed[23]
VTO Take-off speed. (see also VLOF)[28]
Vtocs Take-off climbout speed (helicopters)[17]
Vtos Minimum speed for a positive rate of climb with one engine inoperative[23]
Vtmax Max threshold speed[23][29]
Vwo Maximum window or canopy open operating speed[30]
VXSE Best angle of climb speed with a single operating engine in a light, twin-engine aircraft – the speed that provides the most altitude gain per unit of horizontal distance following an engine failure, while maintaining a small bank angle that should be presented with the engine-out climb performance data.[27]
VYSE Best rate of climb speed with a single operating engine in a light, twin-engine aircraft – the speed that provides the most altitude gain per unit of time following an engine failure, while maintaining a small bank angle that should be presented with the engine-out climb performance data.[15][27]
VZRC Zero rate of climb speed in a twin-engine aircraft[23]

Mach numbers

Whenever a limiting speed is expressed by a Mach number, it is expressed relative to the speed of sound, e.g. VMO: Maximum operating speed, MMO: Maximum operating Mach Number.[7][8]

V1 definitions

V1 is the critical engine failure recognition speed or takeoff decision speed. It is the speed above which the takeoff will continue even if an engine fails or another problem occurs, such as a blown tire.[9] The speed will vary among aircraft types and varies according to factors such as aircraft weight, runway length, wing flap setting, engine thrust used and runway surface contamination, thus it must be determined by the pilot before takeoff. Aborting a takeoff after V1 is strongly discouraged because the aircraft will by definition not be able to stop before the end of the runway, thus suffering a "runway overrun".[31]

V1 is defined differently in different jurisdictions:

  • The US Federal Aviation Administration defines it as: "the maximum speed in the takeoff at which the pilot must take the first action (e.g., apply brakes, reduce thrust, deploy speed brakes) to stop the airplane within the accelerate-stop distance. V1 also means the minimum speed in the takeoff, following a failure of the critical engine at VEF, at which the pilot can continue the takeoff and achieve the required height above the takeoff surface within the takeoff distance."[7]
  • Transport Canada defines it as: "Critical engine failure recognition speed" and adds: "This definition is not restrictive. An operator may adopt any other definition outlined in the aircraft flight manual (AFM) of TC type-approved aircraft as long as such definition does not compromise operational safety of the aircraft."[8]


  1. ^
  2. ^
  3. ^
  4. ^
  5. ^
  6. ^
  7. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj
  8. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z
  9. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab Peppler, I.L.: From The Ground Up, page 327. Aviation Publishers Co. Limited, Ottawa Ontario, Twenty Seventh Revised Edition, 1996. ISBN 0-9690054-9-0
  10. ^
  11. ^ , Section 48 (p.27)Airframe Guide for Certification of Part 23 AirplanesFAA Advisory Circular 23-19A Retrieved 2012-01-06
  12. ^ PANS-OPS, Volume I, Part I, Section 4, Chapter 1, 1.3.3
  13. ^ FAR Part 23.335
  14. ^ a b c MIL-STD-3013A
  15. ^ a b c
  16. ^ a b
  17. ^ a b c d Bell Helicopter Textron: Bell Model 212 Rotorcraft Flight Manual, page II. Bell Helicopters Textron Publishers, Fort Worth, Texas, Revision 3, 1 May 1998. BHT-212IFR-FM-1
  18. ^ USA 14CFR §23.1557 Retrieved 2012-01-06
  20. ^ a b
  21. ^
  22. ^ a b c
  23. ^ a b c d e f g h
  24. ^
  25. ^
  26. ^
  27. ^ a b c
  28. ^ C-130 Hercules Performance Charts.
  29. ^
  30. ^
  31. ^
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.