World Library  
Flag as Inappropriate
Email this Article

Eemian interglacial

 

Eemian interglacial


The Eemian (also Sangamonian, Ipswichian, Mikulin, Valdivia, Riss-Würm) was the interglacial period which began about 130,000 years ago and ended about 114,000 years ago. It was the second-to-latest interglacial period of the current Ice Age, the most recent being the Holocene which extends to the present day. The prevailing Eemian climate is believed to have been similar to that of the Holocene.

The Eemian is also known as the Sangamonian Stage in North America, the Ipswichian Stage in the UK, the Mikulin interglacial in the East European Plain, the Valdivia interglacial in Chile and the Riss-Würm interglacial in the Alps.

Climate


Global temperatures

The Eemian climate is believed to have been about as stable as that of the Holocene. Changes in the earth's orbital parameters from today (greater obliquity and eccentricity, and perihelion), known as the Milankovitch cycle, probably led to greater seasonal temperature variations in the Northern Hemisphere, although global annual mean temperatures were probably similar to those of the Holocene. The warmest peak of the Eemian was around 125,000 years ago, when forests reached as far north as North Cape (which is now tundra) in northern Norway well above the Arctic Circle at 71°10′21″N 25°47′40″E / 71.17250°N 25.79444°E / 71.17250; 25.79444. Hardwood trees like hazel and oak grew as far north as Oulu, Finland.

At the peak of the Eemian, the northern hemisphere winters were generally warmer and wetter than now, though some areas were actually slightly cooler than today. The Hippopotamus was distributed as far north as the rivers Rhine and Thames.[1] Trees grew as far north as southern Baffin Island in the Canadian Arctic Archipelago instead of only as far north as Kuujjuaq in northern Quebec, and the prairie-forest boundary in the Great Plains of the United States lay further west — near Lubbock, Texas, instead of near Dallas, Texas, where the boundary now exists. The period closed as temperatures steadily fell to conditions cooler and drier than the present, with 468-year long aridity pulse in central Europe,[2] and by 114,000 years ago, a glacial period had returned.

Kaspar et al. (GRL, 2005) perform a comparison of a coupled general circulation model (GCM) with reconstructed Eemian temperatures for Europe. Central Europe (north of the Alps) was found to be 1–2 °C warmer than present; south of the Alps, conditions were 1–2 °C cooler than today. The model (generated using observed GHG concentrations and Eemian orbital parameters) generally reproduces these observations, and hence they conclude that these factors are enough to explain the Eemian temperatures.[3]

Sea level


Sea level at peak was probably 4 to 6m (13 to 20 feet) higher than today (references in Overpeck et al., 2006), with much of this extra water coming from Greenland but some likely to have come from Antarctica. Global mean sea surface temperatures are thought to have been higher than in the Holocene, but not by enough to explain the rise in sea level through thermal expansion alone, and so melting of polar ice caps must also have occurred. Because of the sea level drop since the Eemian, exposed fossil coral reefs are common in the tropics, especially in the Caribbean and along the Red Sea coastlines. These reefs often contain internal erosion surfaces showing significant sea level instability during the Eemian.

A 2007 study found evidence that the Greenland ice core site Dye 3 was glaciated during the Eemian,[5] which implies that Greenland could have contributed at most 2 m (6.6 ft) to sea level rise.[6][7] Scandinavia was an island due to the inundation of vast areas of northern Europe and the West Siberian Plain.

Definition of the Eemian

The Eemian Stage was first recognized from boreholes in the area of the city of Amersfoort, Netherlands, by Harting (1875). He named the beds "Système Eémien", after the river Eem on which Amersfoort is located. Harting noticed the marine molluscan assemblages to be very different from the modern fauna of the North Sea. Many species from the Eemian layers nowadays show a much more southern distribution, ranging from South of the Strait of Dover to Portugal (Lusitanian faunal province) and even into the Mediterranean (Mediterranean faunal province). More information on the molluscan assemblages is given by Lorié (1887), and Spaink (1958). Since their discovery, Eemian beds in the Netherlands have mainly been recognized by their marine molluscan content combined with their stratigraphical position and other palaeontology. The marine beds there are often underlain by tills that are considered to date from the Saalian, and overlain by local fresh water or wind-blown deposits from the Weichselian. In contrast to e.g. the deposits in Denmark, the Eemian deposits in the type area have never been found overlain by tills, nor in ice-pushed positions.

Van Voorthuysen (1958) described the foraminifera from the type site, whereas Zagwijn (1961) published the palynology, providing a subdivision of this stage into pollen stages. At the end of the 20th century, the type site was re-investigated using old and new data in a multi-disciplinary approach (Cleveringa et al., 2000). At the same time a parastratotype was selected in the Amsterdam glacial basin in the Amsterdam-Terminal borehole and was the subject of a multidisciplinary investigation (Van Leeuwen, et al., 2000). These authors also published a U/Th age for late Eemian deposits from this borehole of 118,200 ± 6,300 years ago. A historical review of Dutch Eemian research is provided by Bosch, Cleveringa and Meijer, 2000.

See also

References

Further reading

  • Cleveringa, P., Meijer, T., van Leeuwen, R.J.W., de Wolf, H., Pouwer, R., Lissenberg T. and Burger, A.W., 2000. The Eemian stratotype locality at Amersfoort in the central Netherlands: a re-evaluation of old and new data. Geologie & Mijnbouw / Netherlands Journal of Geosciences, 79(2/3): 197-216.
  • Harting, P., 1875. Le système Éemien Archives Néerlandaises Sciences Exactes et Naturelles de la Societé Hollandaise des Sciences (Harlem), 10: 443-454.
  • Harting, P., 1886. Het Eemdal en het Eemstelsel Album der Natuur, 1886: 95-100.
  • Lorié, J., 1887. Contributions a la géologie des Pays Bas III. Le Diluvium plus récent ou sableux et le système Eémien Archives Teyler, Ser. II, Vol. III: 104-160.
  • Spaink, G., 1958. De Nederlandse Eemlagen, I: Algemeen overzicht. Wetenschappelijke Mededelingen Koninklijke Nederlandse Natuurhistorische Vereniging 29, 44 pp.
  • Van Leeuwen, R.J., Beets, D., Bosch, J.H.A., Burger, A.W., Cleveringa, P., van Harten, D., Herngreen, G.F.W., Langereis, C.G., Meijer, T., Pouwer, R., de Wolf, H., 2000. Stratigraphy and integrated facies analysis of the Saalian and Eemian sediments in the Amsterdam-Terminal borehole, the Netherlands. Geologie en Mijnbouw / Netherlands Journal of Geosciences 79, 161-196.
  • Van Voorthuysen, J.H., 1958. Foraminiferen aus dem Eemien (Riss-Würm-Interglazial) in der Bohrung Amersfoort I (Locus Typicus). Mededelingen Geologische Stichting NS 11(1957), 27-39.
  • Zagwijn, W.H., 1961. Vegetation, climate and radiocarbon datings in the Late Pleistocene of the Netherlands. Part 1: Eemian and Early Weichselian. Mededelingen Geologische Stichting NS 14, 15-45.

External links

  • Muhs, D. R., 2006, Last Interglacial: Timing and Environment (LITE) U.S. Geological Survey, Denver, Colorado
  • Foraminifera (Microfossils) of the Eemian Interglacial www.foraminifera.eu
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.